Assessment and grading criteria In order to pass this unit, the evidence that the learner presents for assessment needs to demonstrate that they can meet all the learning outcomes for the unit. The assessment criteria for a pass grade describe the level of achievement required to pass this unit. | Assessment and grading criteria | | | | | | |---|---|---|---|---|--| | To achieve a pass grade the evidence must show that the learner is able to: | | To achieve a merit grade the evidence must show that, in addition to the pass criteria, the learner is able to: | | To achieve a distinction grade the evidence must show that, in addition to the pass and merit criteria, the learner is able to: | | | P1 | describe the advantages,
compared to other methods,
of producing drawings
electronically using a CAD
package | M1 | explain the relationship
between CAD and other
software/hardware used in
manufacturing | D1 | justify the use of CAD in a manufacturing company | | P2 | describe the software and
hardware required to
produce CAD drawings | M2 | explain how the range of
commands used to produce
CAD drawings can impact
drawing production | D2 | evaluate the impact of the use of 2D and 3D CAD models on final design requirements. | | P3 | produce 2D CAD detail
drawings of five components
that make up an assembly
or sub-assembly to given
standards, using appropriate
commands
[CTI, CT5, SM3] | M3 | explain how 3D CAD models can be used in the design process. | | | | P4 | produce a circuit diagram containing at least five components to appropriate standards, using appropriate commands [CTI, CT5, SM3] | | | | | | P5 | produce an assembly drawing
and exploded view of an
assembly or sub-assembly
containing at least five parts,
using appropriate commands
[CTI, CT5, SM3] | | | | | | P6 | interpret the properties of
an engineering component
or circuit from a given CAD
drawing
[IE4] | | | | | | P7 | within a 3D environment construct a 3D CAD drawing as a surface and solid model. | | | | |